Co-infection with HPV types from the same species provides natural cross-protection from progression to cervical cancer
Rafal S Sobota126*, Doreen Ramogola-Masire345, Scott M Williams2 andNicola M Zetola345*
Abstract
Background
The worldwide administration of bivalent and quadrivalent HPV vaccines has resulted in cross-protection against non-vaccine HPV types. Infection with multiple HPV types may offer similar cross-protection in the natural setting. We hypothesized that infections with two or more HPV types from the same species, and independently, infections with two or more HPV types from different species, associate with protection from high-grade lesions.
Findings
We recruited a cohort of 94 HIV, HPV-positive women from Botswana, with Grade 2 or higher cervical intraepithelial neoplasia. Infections with 2 or more HPV types from a single species associated with reduced lesion severity in univariate analysis (OR = 0.41, 95% CI 0.18-0.97, p = 0.042), when adjusted for the presence of HPV 16 or 18 types (OR = 0.41, 95% CI 0.17-1.00, p = 0.049), or all high-risk HPV type infections (OR = 0.38, 95% CI 0.16-0.90, p = 0.028). Infections with 2 or more HPV types from different species did not associate (OR = 0.68, 95% CI 0.25-1.81, p = 0.435).
Conclusions
Our findings show that co-infections with genetically similar HPV types reduce the likelihood of progression to high-grade lesions in HIV positive women, an effect not observed in co-infections with taxonomically different HPV types. This observation is possibly caused by an immune cross-protection through a similar mechanism to that observed after HPV vaccination.
The electronic version of this article is the complete one and can be found online at: http://www.infectagentscancer.com/content/9/1/26
© 2014 Sobota et al.; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Leave a Reply