Amy S. McKeea,b, Matthew A. Burchillb, Michael W. Munksb, Lei Jinc, John W. Kapplerb,c,d,Rachel S. Friedmanc, Jordan Jacobellic, and Philippa Marrackb,c,e,1
Significance
Alum has been used to improve the efficacy of vaccines since the 1930s. Here we show that alum acts in part via host DNA to increase the interaction time between T cells and APCs.
Abstract
Many vaccines include aluminum salts (alum) as adjuvants despite little knowledge of alum’s functions. Host DNA rapidly coats injected alum. Here, we further investigated the mechanism of alum and DNA’s adjuvant function. Our data show that DNase coinjection reduces CD4 T-cell priming by i.m. injected antigen + alum. This effect is partially replicated in mice lacking stimulator of IFN genes, a mediator of cellular responses to cytoplasmic DNA. Others have shown that DNase treatment impairs dendritic cell (DC) migration from the peritoneal cavity to the draining lymph node in mice immunized i.p. with alum. However, our data show that DNase does not affect accumulation of, or expression of costimulatory proteins on, antigen-loaded DCs in lymph nodes draining injected muscles, the site by which most human vaccines are administered. DNase does inhibit prolonged T-cell–DC conjugate formation and antigen presentation between antigen-positive DCs and antigen-specific CD4 T cells following i.m. injection. Thus, from the muscle, an immunization site that does not require host DNA to promote migration of inflammatory DCs, alum acts as an adjuvant by introducing host DNA into the cytoplasm of antigen-bearing DCs, where it engages receptors that promote MHC class II presentation and better DC–T-cell interactions.
Leave a Reply